qdrant-mcp-server

qdrant-mcp-serverは、データベースとストレージの機能を持つ高性能なベクトル検索エンジンです。特に、機械学習モデルの結果を効率的に保存・検索するためのAPIを提供しており、リアルタイムでのデータ分析に適しています。ユーザーは簡単にデータをインポートし、クエリを実行することができます。

GitHubスター

0

ユーザー評価

未評価

お気に入り

0

閲覧数

36

フォーク

0

イシュー

0

README
Qdrant MCP Server

A Model Context Protocol (MCP) server that provides semantic code search capabilities using Qdrant vector database and OpenAI embeddings.

Features
  • 🔍 Semantic Code Search - Find code by meaning, not just keywords
  • 🚀 Fast Indexing - Efficient incremental indexing of large codebases
  • 🤖 MCP Integration - Works seamlessly with Claude and other MCP clients
  • 📊 Background Monitoring - Automatic reindexing of changed files
  • 🎯 Smart Filtering - Respects .gitignore and custom patterns
  • 💾 Persistent Storage - Embeddings stored in Qdrant for fast retrieval
Installation
Prerequisites
  • Node.js 18+
  • Python 3.8+
  • Docker (for Qdrant) or Qdrant Cloud account
  • OpenAI API key
Quick Start
# Install the package
npm install -g @kindash/qdrant-mcp-server

# Or with pip
pip install qdrant-mcp-server

# Set up environment variables
export OPENAI_API_KEY="your-api-key"
export QDRANT_URL="http://localhost:6333"  # or your Qdrant Cloud URL
export QDRANT_API_KEY="your-qdrant-api-key"  # if using Qdrant Cloud

# Start Qdrant (if using Docker)
docker run -p 6333:6333 qdrant/qdrant

# Index your codebase
qdrant-indexer /path/to/your/code

# Start the MCP server
qdrant-mcp
Configuration
Environment Variables

Create a .env file in your project root:

# Required
OPENAI_API_KEY=sk-...

# Qdrant Configuration
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY=  # Optional, for Qdrant Cloud
QDRANT_COLLECTION_NAME=codebase  # Default: codebase

# Indexing Configuration
MAX_FILE_SIZE=1048576  # Maximum file size to index (default: 1MB)
BATCH_SIZE=10  # Number of files to process in parallel
EMBEDDING_MODEL=text-embedding-3-small  # OpenAI embedding model

# File Patterns
INCLUDE_PATTERNS=**/*.{js,ts,jsx,tsx,py,java,go,rs,cpp,c,h}
EXCLUDE_PATTERNS=**/node_modules/**,**/.git/**,**/dist/**
MCP Configuration

Add to your Claude Desktop config (~/.claude/config.json):

{
  "mcpServers": {
    "qdrant-search": {
      "command": "qdrant-mcp",
      "args": ["--collection", "my-codebase"],
      "env": {
        "OPENAI_API_KEY": "sk-...",
        "QDRANT_URL": "http://localhost:6333"
      }
    }
  }
}
Usage
Command Line Interface
# Index entire codebase
qdrant-indexer /path/to/code

# Index with custom patterns
qdrant-indexer /path/to/code --include "*.py" --exclude "tests/*"

# Index specific files
qdrant-indexer file1.js file2.py file3.ts

# Start background indexer
qdrant-control start

# Check indexer status
qdrant-control status

# Stop background indexer
qdrant-control stop
In Claude

Once configured, you can use natural language queries:

  • "Find all authentication code"
  • "Show me files that handle user permissions"
  • "What code is similar to the PaymentService class?"
  • "Find all API endpoints related to users"
  • "Show me error handling patterns in the codebase"
Programmatic Usage
from qdrant_mcp_server import QdrantIndexer, QdrantSearcher

# Initialize indexer
indexer = QdrantIndexer(
    openai_api_key="sk-...",
    qdrant_url="http://localhost:6333",
    collection_name="my-codebase"
)

# Index files
indexer.index_directory("/path/to/code")

# Search
searcher = QdrantSearcher(
    qdrant_url="http://localhost:6333",
    collection_name="my-codebase"
)

results = searcher.search("authentication logic", limit=10)
for result in results:
    print(f"{result.file_path}: {result.score}")
Architecture
┌─────────────────┐     ┌──────────────────┐     ┌─────────────────┐
│   Claude/MCP    │────▶│  MCP Server      │────▶│     Qdrant      │
│     Client      │     │  (Python)        │     │   Vector DB     │
└─────────────────┘     └──────────────────┘     └─────────────────┘
                               │                           ▲
                               ▼                           │
                        ┌──────────────────┐              │
                        │  OpenAI API      │              │
                        │  (Embeddings)    │──────────────┘
                        └──────────────────┘
Advanced Configuration
Custom File Processors
from qdrant_mcp_server import FileProcessor

class MyCustomProcessor(FileProcessor):
    def process(self, file_path: str, content: str) -> dict:
        # Custom processing logic
        return {
            "content": processed_content,
            "metadata": custom_metadata
        }

# Register processor
indexer.register_processor(".myext", MyCustomProcessor())
Embedding Models

Support for multiple embedding providers:

# OpenAI (default)
indexer = QdrantIndexer(embedding_provider="openai")

# Cohere
indexer = QdrantIndexer(
    embedding_provider="cohere",
    cohere_api_key="..."
)

# Local models (upcoming)
indexer = QdrantIndexer(
    embedding_provider="local",
    model_path="/path/to/model"
)
Performance Optimization
Batch Processing
# Process files in larger batches (reduces API calls)
qdrant-indexer /path/to/code --batch-size 50

# Limit concurrent requests
qdrant-indexer /path/to/code --max-concurrent 5
Incremental Indexing
# Only index changed files since last run
qdrant-indexer /path/to/code --incremental

# Force reindex of all files
qdrant-indexer /path/to/code --force
Cost Estimation
# Estimate indexing costs before running
qdrant-indexer /path/to/code --dry-run

# Output:
# Files to index: 1,234
# Estimated tokens: 2,456,789
# Estimated cost: $0.43
Monitoring
Web UI (Coming Soon)
# Start monitoring dashboard
qdrant-mcp --web-ui --port 8080
Logs
# View indexer logs
tail -f ~/.qdrant-mcp/logs/indexer.log

# View search queries
tail -f ~/.qdrant-mcp/logs/queries.log
Metrics
  • Files indexed
  • Tokens processed
  • Search queries per minute
  • Average response time
  • Cache hit rate
Troubleshooting
Common Issues

"Connection refused" error

  • Ensure Qdrant is running: docker ps
  • Check QDRANT_URL is correct
  • Verify firewall settings

"Rate limit exceeded" error

  • Reduce batch size: --batch-size 5
  • Add delay between requests: --delay 1000
  • Use a different OpenAI tier

"Out of memory" error

  • Process fewer files at once
  • Increase Node.js memory: NODE_OPTIONS="--max-old-space-size=4096"
  • Use streaming mode for large files
Debug Mode
# Enable verbose logging
qdrant-mcp --debug

# Test connectivity
qdrant-mcp --test-connection

# Validate configuration
qdrant-mcp --validate-config
Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Development Setup
# Clone the repository
git clone https://github.com/kindash/qdrant-mcp-server
cd qdrant-mcp-server

# Install dependencies
npm install
pip install -e .

# Run tests
npm test
pytest

# Run linting
npm run lint
flake8 src/
License

MIT License - see LICENSE for details.

Acknowledgments
Support