StockScreener-MCP-with-Ollama-and-Langchain

このプロジェクトは、MCPを利用してローカルで動作するAIアシスタントを構築し、詳細な株式分析を提供します。OllamaとLangChainを活用し、財務データのウェブスクレイピングを行うことで、企業情報や利益分析、株主構成を分析する機能を備えています。

GitHubスター

0

ユーザー評価

未評価

お気に入り

0

閲覧数

7

フォーク

0

イシュー

0

README
🧠 Stock Analysis using MCP Local LLM (Ollama Qwen3) with LangChain

This project demonstrates how to build a fully local AI assistant that provides detailed stock analysis using:

  • MCP (Model Context Protocol): Enables structured tool usage by the language model.

  • Ollama: A tool for running large language models locally.(Qwen3)

  • LangChain: A framework for developing applications powered by language models and run as MCP Client

  • BeautifulSoup: For web scraping financial data from Screener.in.

📦 Features
🔍 Company Details: Retrieve company name, current price, market cap, PE ratio, ROE, ROCE, and more.

📈 Profit Analysis: Extract quarterly and yearly net profit data.

👥 Shareholding Patterns: Analyze holdings by promoters, DIIs, FIIs, and the public.

🔧 Tool Integration: Seamless integration with MCP tools for enhanced functionality.
⚙️ Configuration
MCP Server Setup

The MCP server is defined in mcp_config.json.

{
  "mcpServers": {
    "stock": {
      "command": "python",
      "args": ["StockMcp.py"],
      "transport": "stdio"
    }
  }
}


Give me the company details of CREDITACC.NS
🛠️ Project Structure
├── StockMcp.py         # MCP server with tool definitions
├── requirements.txt    # Python dependencies
├── README.md           # Project documentation
📚 Resources
MCP Github

Ollama Documentation

LangChain MCP Documentation

BeautifulSoup Documentation