isaac-sim-mcp

The Isaac Sim MCP extension allows for natural language control of NVIDIA's Isaac Sim, transforming conversational AI inputs into precise simulation manipulations. It enables dynamic robot positioning, custom scene creation, and advanced robot simulations including obstacle navigation, making it a powerful tool for embodied intelligence applications.

GitHub Stars

79

User Rating

Not Rated

Favorites

0

Views

31

Forks

19

Issues

4

Installation
Difficulty
Intermediate
Estimated Time
10-20 minutes
Requirements
NVIDIA Isaac Sim 4.2.0 or higher
Python 3.9+
+1 more

Installation

Installation

Prerequisites

NVIDIA Isaac Sim: 4.2.0 or higher
Python: 3.9+
Cursor AI editor: for MCP integration

Installation Steps

1. Clone Repository

bash
cd ~/Documents
git clone https://github.com/omni-mcp/isaac-sim-mcp

2. Install and Enable Extension

Set the extension location to your project folder:
Extension location: ~/Documents/isaac-sim-mcp
Extension ID: isaac.sim.mcp_extension
bash

Change to your Isaac Sim installation directory

cd ~/.local/share/ov/pkg/isaac-sim-4.2.0 ./isaac-sim.sh --ext-folder /home/ubuntu/Documents/isaac-sim-mcp/ --enable isaac.sim.mcp_extension

3. Install MCP Server

1Run the following in the terminal to ensure the MCP server starts successfully:
bash
   uv pip install "mcp[cli]"
   uv run /home/ubuntu/Documents/isaac-sim-mcp/isaac_mcp/server.py
   
2Start Cursor and open the folder ~/Documents/isaac-sim-mcp.
3Add the MCP server in Cursor preferences:
json
{
    "mcpServers": {
        "isaac-sim": {
            "command": "uv run /home/ubuntu/Documents/isaac-sim-mcp/isaac_mcp/server.py"
        }
    }
}

Configuration

Configuration

Basic Configuration

MCP Server Setup

Edit the Cursor configuration file to add the MCP server:
json
{
    "mcpServers": {
        "isaac-sim": {
            "command": "uv run /home/ubuntu/Documents/isaac-sim-mcp/isaac_mcp/server.py"
        }
    }
}

Environment Variables

You need to set the following environment variables:
bash
export BEAVER3D_MODEL=
export ARK_API_KEY=
export NVIDIA_API_KEY=""

Examples

Examples

Basic Usage

Using with Python

python
import requests

def call_mcp_tool(tool_name, params):
    response = requests.post(
        'http://localhost:8766/mcp/call',
        json={
            'tool': tool_name,
            'parameters': params
        }
    )
    return response.json()

Usage example

result = call_mcp_tool('move_robot', { 'direction': 'forward', 'distance': 5 }) print(result)

Using Command Line

bash
curl -X POST http://localhost:8766/mcp/call -H "Content-Type: application/json" -d '{"tool": "set_lighting", "parameters": {"intensity": 0.8}}'

Use Cases

Instruct a robot to perform specific actions using natural language.
Customize scene lighting to simulate different environments.
Dynamically compute robot paths to avoid obstacles.
Preview code before execution to prevent errors in simulation.

Additional Resources