GitHub Stars
109
User Rating
Not Rated
Favorites
0
Views
39
Forks
28
Issues
15
Installation
Difficulty
IntermediateEstimated Time
10-20 minutes
Requirements
Python 3.7以上Haystack 最新版Installation
Installation
Prerequisites
Please specify required software and versions:Python: 3.7 or higher
Haystack: Latest version
Installation Steps
1. Clone Repository
bash
git clone https://github.com/deepset-ai/hayhooks.git
cd hayhooks
2. Install Dependencies
bash
pip install -r requirements.txt
3. Start Server
bash
python -m hayhooks
Troubleshooting
Common Issues
Issue: Server won't start Solution: Check Python version and reinstall dependencies. Issue: Haystack is not installed correctly Solution: Recheck Haystack installation instructions.Configuration
Configuration
Basic Configuration
Environment Variables
Set the following environment variables as needed:bash
export API_KEY="your-api-key"
export DEBUG="true"
Configuration Example
Basic Configuration
json
{
"mcpServers": {
"hayhooks": {
"command": "python",
"args": ["-m", "hayhooks"],
"env": {
"API_KEY": "your-api-key"
}
}
}
}
Examples
Examples
Basic Usage
Programmatic Usage
python
import requests
def call_mcp_tool(tool_name, params):
response = requests.post(
'http://localhost:3000/mcp/call',
json={
'tool': tool_name,
'parameters': params
}
)
return response.json()
Usage example
result = call_mcp_tool('analyze', {
'input': 'sample data',
'options': {'format': 'json'}
})
Use Cases
Deployment and utilization of Haystack pipelines in AI development environments
API operations via chat using Claude Desktop
Exposing Haystack pipelines through Cursor
Calling MCP tools from automation scripts