openrouter-deep-research-mcp
OpenRouter Agents MCP Serverは、AI駆動の研究を支援するための高度なオーケストレーションシステムを実装しています。MCPプロトコルを使用して、複数の専門エージェントが連携し、効率的な情報収集と分析を行います。特に、Claude研究オーケストレーターを介して、会話型LLMが研究を委任できる機能を提供します。
GitHubスター
27
ユーザー評価
未評価
お気に入り
0
閲覧数
20
フォーク
8
イシュー
0
OpenRouter Agents MCP Server
[UPDATE – 2025-08-26] Two modes (set MODE env):
- AGENT: one simple tool (
agent
) that routes research / follow_up / retrieve / query - MANUAL: individual tools for each action
- ALL (default): both AGENT and MANUAL, plus always-on ops tools
Diagram (simple)
[Always-On Ops] ping • get_server_status • job_status • cancel_job
AGENT MODE
client → agent → (research | follow_up | retrieve | query)
MANUAL MODE
client → (submit_research | conduct_research | retrieve | query | research_follow_up | get_report_content | list_research_history)
- Killer features
- Plan → parallelize → synthesize workflow with bounded parallelism
- Dynamic model catalog; supports Anthropic Sonnet‑4 and OpenAI GPT‑5 family
- Built‑in semantic KB (PGlite + pgvector) with backup, export/import, health, and reindex tools
- Lightweight web helpers: quick search and page fetch for context
- Robust streaming (SSE), per‑connection auth, clean logs
Install / Run
- Install (project dependency)
npm install @terminals-tech/openrouter-agents
- Global install (optional)
npm install -g @terminals-tech/openrouter-agents
- Run with npx (no install)
npx @terminals-tech/openrouter-agents --stdio
# or daemon
SERVER_API_KEY=devkey npx @terminals-tech/openrouter-agents
What’s new (v1.5.0)
- Version parity across npm, GitHub Releases, and GitHub Packages
- Dual publish workflow enabled
Quick start
- Prereqs
- Node 18+ (20 LTS recommended), npm, Git, OpenRouter API key
- Install
npm install
- Configure (.env)
OPENROUTER_API_KEY=your_openrouter_key
SERVER_API_KEY=your_http_transport_key
SERVER_PORT=3002
# Modes (pick one; default ALL)
# AGENT = agent-only + always-on ops (ping/status/jobs)
# MANUAL = individual tools + always-on ops
# ALL = agent + individual tools + always-on ops
MODE=ALL
# Orchestration
ENSEMBLE_SIZE=2
PARALLELISM=4
# Models (override as needed) - Updated with state-of-the-art cost-effective models
PLANNING_MODEL=openai/gpt-5-chat
PLANNING_CANDIDATES=openai/gpt-5-chat,google/gemini-2.5-pro,anthropic/claude-sonnet-4
HIGH_COST_MODELS=x-ai/grok-4,openai/gpt-5-chat,google/gemini-2.5-pro,anthropic/claude-sonnet-4,morph/morph-v3-large
LOW_COST_MODELS=deepseek/deepseek-chat-v3.1,z-ai/glm-4.5v,qwen/qwen3-coder,openai/gpt-5-mini,google/gemini-2.5-flash
VERY_LOW_COST_MODELS=openai/gpt-5-nano,deepseek/deepseek-chat-v3.1
# Storage
PGLITE_DATA_DIR=./researchAgentDB
PGLITE_RELAXED_DURABILITY=true
REPORT_OUTPUT_PATH=./research_outputs/
# Indexer
INDEXER_ENABLED=true
INDEXER_AUTO_INDEX_REPORTS=true
INDEXER_AUTO_INDEX_FETCHED=true
# MCP features
MCP_ENABLE_PROMPTS=true
MCP_ENABLE_RESOURCES=true
# Prompt strategy
PROMPTS_COMPACT=true
PROMPTS_REQUIRE_URLS=true
PROMPTS_CONFIDENCE=true
- Run
- STDIO (for Cursor/VS Code MCP):
node src/server/mcpServer.js --stdio
- HTTP/SSE (local daemon):
SERVER_API_KEY=$SERVER_API_KEY node src/server/mcpServer.js
Windows PowerShell examples
- STDIO
$env:OPENROUTER_API_KEY='your_key'
$env:INDEXER_ENABLED='true'
node src/server/mcpServer.js --stdio
- HTTP/SSE
$env:OPENROUTER_API_KEY='your_key'
$env:SERVER_API_KEY='devkey'
$env:SERVER_PORT='3002'
node src/server/mcpServer.js
One-liner demo scripts
Dev (HTTP/SSE):
SERVER_API_KEY=devkey INDEXER_ENABLED=true node src/server/mcpServer.js
STDIO (Cursor/VS Code):
OPENROUTER_API_KEY=your_key INDEXER_ENABLED=true node src/server/mcpServer.js --stdio
MCP client JSON configuration (no manual start required)
You can register this server directly in MCP clients that support JSON server manifests.
Minimal examples:
- STDIO transport (recommended for IDEs)
{
"servers": {
"openrouter-agents": {
"command": "npx",
"args": ["@terminals-tech/openrouter-agents", "--stdio"],
"env": {
"OPENROUTER_API_KEY": "${OPENROUTER_API_KEY}",
"SERVER_API_KEY": "${SERVER_API_KEY}",
"PGLITE_DATA_DIR": "./researchAgentDB",
"INDEXER_ENABLED": "true"
}
}
}
}
- HTTP/SSE transport (daemon mode)
{
"servers": {
"openrouter-agents": {
"url": "http://127.0.0.1:3002",
"sse": "/sse",
"messages": "/messages",
"headers": {
"Authorization": "Bearer ${SERVER_API_KEY}"
}
}
}
}
With the package installed globally (or via npx), MCP clients can spawn the server automatically. See your client’s docs for where to place this JSON (e.g., ~/.config/client/mcp.json
).
Tools (high‑value)
- Always‑on (all modes):
ping
,get_server_status
,job_status
,get_job_status
,cancel_job
- AGENT:
agent
(single entrypoint for research / follow_up / retrieve / query) - MANUAL/ALL toolset:
submit_research
(async),conduct_research
(sync/stream),research_follow_up
,search
(hybrid),retrieve
(index/sql),query
(SELECT),get_report_content
,list_research_history
- Jobs:
get_job_status
,cancel_job
- Retrieval:
search
(hybrid BM25+vector with optional LLM rerank),retrieve
(index/sql wrapper) - SQL:
query
(SELECT‑only, optionalexplain
) - Knowledge base:
get_past_research
,list_research_history
,get_report_content
- DB ops:
backup_db
(tar.gz),export_reports
,import_reports
,db_health
,reindex_vectors
- Models:
list_models
- Web:
search_web
,fetch_url
- Indexer:
index_texts
,index_url
,search_index
,index_status
Tool usage patterns (for LLMs)
Use tool_patterns
resource to view JSON recipes describing effective chaining, e.g.:
- Search → Fetch → Research
- Async research: submit, stream via SSE
/jobs/:id/events
, then get report content
Notes
- Data lives locally under
PGLITE_DATA_DIR
(default./researchAgentDB
). Backups are tarballs in./backups
. - Use
list_models
to discover current provider capabilities and ids.
Architecture at a glance
See docs/diagram-architecture.mmd
(Mermaid). Render to SVG with Mermaid CLI if installed:
npx @mermaid-js/mermaid-cli -i docs/diagram-architecture.mmd -o docs/diagram-architecture.svg
Or use the script:
npm run gen:diagram
If the image doesn’t render in your viewer, open docs/diagram-architecture-branded.svg
directly.
Answer crystallization view
How it differs from typical “agent chains”:
- Not just hardcoded handoffs; the plan is computed, then parallel agents search, then a synthesis step reasons over consensus, contradictions, and gaps.
- The system indexes what it reads during research, so subsequent queries get faster/smarter.
- Guardrails shape attention: explicit URL citations, [Unverified] labelling, and confidence scoring.
Minimal‑token prompt strategy
- Compact mode strips preambles to essential constraints; everything else is inferred.
- Enforced rules: explicit URL citations, no guessing IDs/URLs, confidence labels.
- Short tool specs: use concise param names and rely on server defaults.
Common user journeys
“Give me an executive briefing on MCP status as of July 2025.”
- Server plans sub‑queries, fetches authoritative sources, synthesizes with citations.
- Indexed outputs make related follow‑ups faster.
“Find vision‑capable models and route images gracefully.”
/models
discovered and filtered, router template generated, fallback to text models.
“Compare orchestration patterns for bounded parallelism.”
- Pulls OTel/Airflow/Temporal docs, produces a MECE synthesis and code pointers.
Cursor IDE usage
- Add this server in Cursor MCP settings pointing to
node src/server/mcpServer.js --stdio
. - Use the new prompts (
planning_prompt
,synthesis_prompt
) directly in Cursor to scaffold tasks.
FAQ (quick glance)
- How does it avoid hallucinations?
- Strict citation rules, [Unverified] labels, retrieval of past work, on‑the‑fly indexing.
- Can I disable features?
- Yes, via env flags listed above.
- Does it support streaming?
- Yes, SSE for HTTP; stdio for MCP.
Command Map (quick reference)
- Start (stdio):
npm run stdio
- Start (HTTP/SSE):
npm start
- Run via npx (scoped):
npx @terminals-tech/openrouter-agents --stdio
- Generate examples:
npm run gen:examples
- List models: MCP
list_models { refresh:false }
- Submit research (async):
submit_research { q:"<query>", cost:"low", aud:"intermediate", fmt:"report", src:true }
- Track job:
get_job_status { job_id:"..." }
, cancel:cancel_job { job_id:"..." }
- Unified search:
search { q:"<query>", k:10, scope:"both" }
- SQL (read‑only):
query { sql:"SELECT ... WHERE id = $1", params:[1], explain:true }
- Get past research:
get_past_research { query:"<query>", limit:5 }
- Index URL (if enabled):
index_url { url:"https://..." }
- Micro UI (ghost): visit
http://localhost:3002/ui
to stream job events (SSE).
Package publishing
- Name:
@terminals-tech/openrouter-agents
- Version: 1.3.2
- Bin:
openrouter-agents
- Author: Tej Desai admin@terminals.tech
- Homepage: https://terminals.tech
Install and run without cloning:
npx @terminals-tech/openrouter-agents --stdio
# or daemon
SERVER_API_KEY=your_key npx @terminals-tech/openrouter-agents
Publish (scoped)
npm login
npm version 1.3.2 -m "chore(release): %s"
git push --follow-tags
npm publish --access public --provenance
Validation – MSeeP (Multi‑Source Evidence & Evaluation Protocol)
- Citations enforced: explicit URLs, confidence tags; unknowns marked
[Unverified]
. - Cross‑model triangulation: plan fans out to multiple models; synthesis scores consensus vs contradictions.
- KB grounding: local hybrid index (BM25+vector) retrieves past work for cross‑checking.
- Human feedback:
rate_research_report { rating, comment }
stored to DB; drives follow‑ups. - Reproducibility:
export_reports
+backup_db
capture artifacts for audit.
Quality feedback loop
- Run examples:
npm run gen:examples
- Review:
list_research_history
,get_report_content {reportId}
- Rate:
rate_research_report { reportId, rating:1..5, comment }
- Improve retrieval:
reindex_vectors
,index_status
,search_index { query }
Architecture diagram (branded)
- See
docs/diagram-architecture-branded.svg
(logo links tohttps://terminals.tech
).