python-mcp-server-client

支持查询主流agent框架技术文档的MCP server(支持stdio和sse两种传输协议), 支持 langchain、llama-index、autogen、agno、openai-agents-sdk、mcp-doc、camel-ai 和 crew-ai

GitHub Stars

135

User Rating

Not Rated

Favorites

0

Views

91

Forks

29

Issues

9

Installation
Difficulty
Intermediate
Estimated Time
10-20 minutes
Requirements
Python 3.7以上
UVの最新バージョン

Installation

Installation

Prerequisites

Python: 3.7 or higher
UV: Latest version

Installation Steps

1. Install UV Package

MacOS/Linux:
bash
curl -LsSf https://astral.sh/uv/install.sh | sh
Windows:
powershell
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

2. Initialize Project

bash

Create project directory

uv init mcp-server cd mcp-server

Create and activate virtual environment

uv venv source .venv/bin/activate # Windows: .venv\Scripts\activate

Install dependencies

uv add "mcp[cli]" httpx

Create server implementation file

touch main.py

Troubleshooting

Issue: Server won't start Solution: Check Python version and reinstall dependencies.

Configuration

Configuration

Basic Configuration

Server Setup

Edit the main.py file to implement the MCP server. Here is a basic configuration example:
python
import json
import os
import httpx
from mcp import tool

async def search_web(query: str) -> dict | None:
    payload = json.dumps({"q": query, "num": 3})
    headers = {
        "X-API-KEY": os.getenv("SERPER_API_KEY"),
        "Content-Type": "application/json",
    }
    async with httpx.AsyncClient() as client:
        response = await client.post(SERPER_URL, headers=headers, data=payload, timeout=30.0)
        return response.json()

Environment Variables

Set the following environment variables as needed:
bash
export SERPER_API_KEY="your-api-key"

Examples

Examples

Basic Usage

Here is a basic usage example for the MCP server:

Programmatic Usage

python
import requests
import json

def call_mcp_tool(tool_name, params):
    response = requests.post(
        'http://localhost:3000/mcp/call',
        json={
            'tool': tool_name,
            'parameters': params
        }
    )
    return response.json()

Usage example

result = call_mcp_tool('analyze', { 'input': 'sample data', 'options': {'format': 'json'} })

Use Cases

Projects that require unified API calls to AI models
Applications that integrate information from different data sources
Tools that perform data transformation or processing between AI frameworks
Automated data analysis or reporting systems

Additional Resources