openai-sdk-knowledge-org

このプロジェクトは、OpenAI APIを活用したMCPサーバーであり、TypeScriptで構築されています。Cloudflare Workersを利用し、最新の技術を駆使して、技術的な質問に答えるための強力なツールです。常に最新の情報を取得し、ユーザーに高品質なサポートを提供します。

GitHubスター

10

ユーザー評価

未評価

お気に入り

0

閲覧数

48

フォーク

0

イシュー

0

README
OpenAI SDK Knowledge MCP Server (unofficial)

License: MIT
TypeScript
Cloudflare Workers

An MCP server that knows the OpenAI API inside and out. 100% TypeScript built with OpenAI Agents SDK, Hono, Cloudflare Workers, and Drizzle ORM. Powered by RAG and ready to answer your technical questions.

website
Developer Highlights
  • Cloudflare stack: Fully leverages Cloudflare Workers, Queues, D1, Vectorize, and AI Gateway.
  • Streamable HTTP MPC Server: Compatible with any MPC clients.
  • ChatGPT Deep Research connector: Meets ChatGPT's Deep Research connector requirements.
  • Always updated: Continuously fetches OpenAI repos and community forums for new content.
  • Rapidly built with AI: Developed hand in hand with various AI coding tools.
Streamable HTTP MCP Server

Use a publicly accessible URL (e.g., ngrok, Cloudflare Tunnel) to serve the endpoints for MCP clients. You can generate the token on the top page:

{
  "mcpServers": {
    "openai-sdk-knowledge.org": {
      "type": "streamable-http",
      "url": "https://openai-sdk-knowledge.org/mcp",
      "headers": {
        "Authorization": "Bearer {your api key here}"
      }
    }
  }
}

For example, you can add this MCP server to Cursor:

Cursor MCP server

Not only Cursor—you can use this MCP server with any other tools supporting MCP server connections.

OpenAI Responses API's Hosted MCP Server Tool

You can pass https://openai-sdk-knowledge.org/mcp along with a valid API token:

Then, you can call the tool in the conversation with the Responses API agent:

ChatGPT Deep Research MCP Connector

Also, for ChatGPT Deep Research customer connector, use the same URL. When the ChatGPT server accesses this app's MCP server endpoint, it returns search and fetch tools as well (see the documentation for details).

Use the connector in Deep Research
Run Locally
# Clone and install
git clone https://github.com/seratch/openai-sdk-knowledge-org.git
cd openai-sdk-knowledge-org/
npm install

# Configure (add your OpenAI API key)
cp .dev.vars.example .dev.vars
# Edit .dev.vars: OPENAI_API_KEY=sk-your-key-here

# Run it
npm run dev

You can access http://localhost:8787 and see how it works.

Requirements: Node.js 22+ and API keys (OpenAI, GitHub)

Architecture

This app is essentially a simple web app that runs on Cloudflare Workers. The web app provides MCP server protocol compatible endpoints, as well as a web user interface. For the RAG data pipeline, it collects data from sources and generates asynchronous tasks to run and enqueue them into Cloudflare’s Queue.

src/
├── agents/          # Internally used agents built with OpenAI Agents SDK
├── pipeline/        # RAG data collection and processing
├── server/mcp/      # MCP protocol implementation
├── server/web/      # Web app implementation
├── storage/         # Vector database (Vectorize) and D1 database access
└── index.ts         # App entry point
License

MIT