agenite

Agenite is a modern, modular framework for building AI agents using TypeScript. It emphasizes type safety and is designed to enhance the developer experience. It simplifies the creation, composition, and control of agents while offering powerful capabilities.

GitHub Stars

65

User Rating

Not Rated

Favorites

0

Views

19

Forks

9

Issues

2

README
🤖 Agenite
Agenite Logo

A modern, modular, and type-safe framework for building AI agents using typescript

GitHub license
npm version
TypeScript
PRs Welcome

What is Agenite?

Agenite is a powerful TypeScript framework designed for building sophisticated AI agents. It provides a modular, type-safe, and flexible architecture that makes it easy to create, compose, and control AI agents with advanced capabilities.

✨ Key features
  • Type safety and developer experience

    • Built from the ground up with TypeScript
    • Robust type checking for tools and agent configurations
    • Excellent IDE support and autocompletion
  • Tool integration

    • First-class support for function calling
    • Built-in JSON Schema validation
    • Structured error handling
    • Easy API integration
  • Provider agnostic

    • Support for OpenAI, Anthropic, AWS Bedrock, and Ollama
    • Consistent interface across providers
    • Easy extension for new providers
  • Advanced architecture

    • Bidirectional flow using JavaScript generators
    • Step-based execution model
    • Built-in state management with reducers
    • Flexible middleware system
  • Model context protocol (MCP)

    • Standardized protocol for connecting LLMs to data sources
    • Client implementation for interacting with MCP servers
    • Access to web content, filesystem, databases, and more
📦 Available packages
Package Description Installation
Core packages
@agenite/agent Core agent orchestration framework for managing LLM interactions, tool execution, and state management npm install @agenite/agent
@agenite/tool Tool definition framework with type safety, schema validation, and error handling npm install @agenite/tool
@agenite/llm Base provider interface layer that enables abstraction across different LLM providers npm install @agenite/llm
Provider packages
@agenite/openai Integration with OpenAI's API for GPT models with function calling support npm install @agenite/openai
@agenite/anthropic Integration with Anthropic's API for Claude models npm install @agenite/anthropic
@agenite/bedrock AWS Bedrock integration supporting Claude and other models npm install @agenite/bedrock
@agenite/ollama Integration with Ollama for running models locally npm install @agenite/ollama
MCP package
@agenite/mcp Model Context Protocol client for connecting to standardized data sources and tools npm install @agenite/mcp
Middleware packages
@agenite/pretty-logger Colorful console logging middleware for debugging agent execution npm install @agenite/pretty-logger

For a typical setup, you'll need the core packages and at least one provider:

# Install core packages
npm install @agenite/agent @agenite/tool @agenite/llm

# Install your preferred provider
npm install @agenite/openai
# OR
npm install @agenite/bedrock
🚀 Quick start
import { Agent } from '@agenite/agent';
import { Tool } from '@agenite/tool';
import { BedrockProvider } from '@agenite/bedrock';
import { prettyLogger } from '@agenite/pretty-logger';

// Create a calculator tool
const calculatorTool = new Tool<{ expression: string }>({
  name: 'calculator',
  description: 'Perform basic math operations',
  inputSchema: {
    type: 'object',
    properties: {
      expression: { type: 'string' },
    },
    required: ['expression'],
  },
  execute: async ({ input }) => {
    try {
      const result = new Function('return ' + input.expression)();
      return { isError: false, data: result.toString() };
    } catch (error) {
      if (error instanceof Error) {
        return { isError: true, data: error.message };
      }
      return { isError: true, data: 'Unknown error' };
    }
  },
});

// Create an agent
const agent = new Agent({
  name: 'math-buddy',
  provider: new BedrockProvider({
    model: 'anthropic.claude-3-5-sonnet-20240620-v1:0',
  }),
  tools: [calculatorTool],
  instructions: 'You are a helpful math assistant.',
  middlewares: [prettyLogger()],
});

// Example usage
const result = await agent.execute({
  messages: [
    {
      role: 'user',
      content: [{ type: 'text', text: 'What is 1234 * 5678?' }],
    },
  ],
});
🏗️ Core concepts
Agents

Agents are the central building blocks in Agenite. An agent:

  • Orchestrates interactions between LLMs and tools
  • Manages conversation state and context
  • Handles tool execution and results
  • Supports nested execution for complex workflows
  • Provides streaming capabilities for real-time interactions
Tools

Tools extend agent capabilities by providing specific functionalities:

  • Strong type safety with TypeScript
  • JSON Schema validation for inputs
  • Flexible error handling
  • Easy API integration
Providers

Currently supported LLM providers:

  • OpenAI API (GPT models)
  • Anthropic API (Claude models)
  • AWS Bedrock (Claude, Titan models)
  • Local models via Ollama
Model Context Protocol (MCP)

MCP is a standardized protocol for connecting LLMs to data sources:

  • Client implementation for interacting with MCP servers
  • Access to web content, filesystem, databases, and more
  • Similar to how USB-C provides universal hardware connections
🔄 Advanced features
Multi-agent systems
// Create specialist agents
const calculatorAgent = new Agent({
  name: 'calculator-specialist',
  provider,
  tools: [calculatorTool],
  description: 'Specializes in mathematical calculations',
});

const weatherAgent = new Agent({
  name: 'weather-specialist',
  provider,
  tools: [weatherTool],
  description: 'Provides weather information',
});

// Create a coordinator agent
const coordinatorAgent = new Agent({
  name: 'coordinator',
  provider,
  agents: [calculatorAgent, weatherAgent],
  instructions: 'Coordinate between specialist agents to solve complex problems.',
});
Step-based execution
// Create an iterator for fine-grained control
const iterator = agent.iterate({
  messages: [{ role: 'user', content: [{ type: 'text', text: 'Calculate 25 divided by 5, then multiply by 3' }] }],
  stream: true,
});

// Process the stream with custom handling
for await (const chunk of iterator) {
  switch (chunk.type) {
    case 'agenite.llm-call.streaming':
      console.log(chunk.content);
      break;
    case 'agenite.tool-call.params':
      console.log('Using tool:', chunk.toolUseBlocks);
      break;
    case 'agenite.tool-result':
      console.log('Tool result:', chunk.result);
      break;
  }
}
📚 Documentation

For comprehensive documentation, visit docs.agenite.com:

🤝 Community
🛠️ Development
git clone https://github.com/subeshb1/agenite.git
cd agenite
pnpm install
pnpm build
📄 License

MIT

🌟 Star history

Star History Chart